月度归档:2019年02月

opencv + tensorflow + C++ 对RSNet模型进行预测

opencv + tensorflow + C++ 对RSNet模型进行预测

本文介绍了一种使用opencv + c++ 可以在生产环境下调用tensorflow pb文件进行预测的方法。
该方法不需要在生产环境下搭建python运行环境。 流程上相对简单清晰。如果要将神经网络/机器学习添加到几年前项目中,也比较简单可行。

一.pb文件的生成

本人使用的RsNet模型完全参考github上官方给出的demo训练生成。网址https://github.com/tensorflow/models
训练入口文件official/resnet/imagenet_main.py (主线版本 v1.8.1)
只定义了2个分类,具体的训练方法就不再累

训练完成后会在根目录生成一个imagenet_model文件夹,里面存储了模型文件(ckpt文件)。接下来需要将模型文件固化成pb文件。为了让opencv可以使用这个pb文件,需要定义好神经网络input入口与output出口

继续阅读
Centos7 + Flask + uwsgi + nginx 部署 TensorFlow

Centos7 + Flask + uwsgi + nginx 部署 TensorFlow

本文介绍了一个采用Flask + uwsgi + nginx 部署TensorFlow应用的方法。以此可以搭建一个简单的机器学习云服务器

一. 创建虚拟环境

由于本人安装的电脑带有显卡,所以安装了2个版本的tensorflow,一个带gpu,一个不带gpu。不同版本的tensorflow使用虚拟环境进行分割

pip install virtualenv
mkdir tf_gpu
virtualenv tf_gpu –system-site-packages
mkdir tf_cpu
virtualenv tf_cpu –system-site-packages
注:添加 –system-site-packages 是将系统site-packages里的包 包含进去; 虚拟目录的位置按需设

二.tensorflow安装

tensorflow的安装可以参考官网上的连接通过pip安装或者自己编译

https://www.tensorflow.org/install/pip 或 https://www.tensorflow.org/install/source

继续阅读